Helical Screw Sense of Peptide Molecules. X-Ray Diffraction Structures of Two Oligopeptides with a Single Chiral Centre

Marco Crisma, Giovanni Valle, Fernando Formaggio, Alberto Bianco and Claudio Toniolo* Biopolymer Research Centre, C.N.R., Department of Organic Chemistry, University of Padova, 35131 Padova, Italy

Abstract

A crystal-state structural analysis of Z-L-Dap $(p B r B z)-(\mathrm{Aib})_{2}-\mathrm{NHMe}$ and $\mathrm{Z}-\mathrm{L}-\mathrm{Dab}(\mathrm{pBrBz})-(\mathrm{Aib})_{2}-$ NHMe has been performed by X-ray diffraction. Both peptides are folded into incipient 3_{10} helices stabilized by two consecutive intramolecular $N-H \cdots O=C$ hydrogen bonds of the C_{10} type (β bends). While $\mathrm{Z}-\mathrm{L}-\operatorname{Dap}(\mathrm{pBrBz})-(\mathrm{Aib})_{2}-\mathrm{NHMe}$ gives rise to a left-handed helix, two independent molecules of opposite helical screw sense are observed in the crystals of $\mathrm{Z}-\mathrm{L}-\mathrm{Dab}(\rho \mathrm{BrBz})-(\mathrm{Aib})_{2^{-}}$ NHMe. The latter compound represents the first example of screw sense indifference shown in the crystal state by a peptide containing a single chiral C^{α}-trisubstituted x-amino acid residue.

A program is currently under way in our laboratory aimed at synthesizing and examining the 3D-structure of peptides based on the highly helicogenic x-aminoisobutyric acid (Aib) residue ${ }^{15}$ as well organized molecular scaffolds and carrying side-chain functionalized x-amino acids as guest residues, as potential tools for studies of molecular recognition. We have so far investigated Aib-rich peptides containing l-Dap $(p \mathrm{BrBz})$ or $\mathrm{L}-\mathrm{Dab}(p \mathrm{BrBz})\left[\mathrm{L}-\mathrm{Dap}(p \mathrm{BrBz}), \mathrm{N}^{\beta}\right.$ - p-bromobenzoyl-L-x, β diaminopropionic acid; $\mathrm{L}-\mathrm{Dab}(p \mathrm{BrBz}), \mathrm{N}^{\gamma}$ - p-bromobenzoyl-Lx, γ-diaminobutyric acid] as the guest residues. In the present contribution the X-ray diffraction analysis of the two N^{x} protected tripeptide methylamides $\mathrm{Z}-\mathrm{L}-\mathrm{Dap}(\rho \mathrm{BrBz})-(\mathrm{Aib})_{2}$ NHMe (1) and Z-L-Dab($p \mathrm{BrBz}$)-(Aib) 2_{2} - NHMe (2) (Z, benzyloxycarbonyl; NHMe, methylamino) are reported as an interesting case of different helix screw sense preference.

Experimental

Materials.-Z-L-Dap($p \mathrm{BrBz}$)-(Aib) $)_{2}$-NHMe (1) was synthesized in 73% yield by reacting $\mathrm{Z}-\mathrm{L}-\mathrm{Dap}(p \mathrm{BrBz})-\mathrm{OH}$ with H -$\mathrm{Aib})_{2}$-NHMe [prepared, in turn, by catalytic hydrogenation of Z-(Aib) $)_{2}-\mathrm{NHMe}$] in anhydrous MeCN in the presence of N -ethyl- N^{\prime}-(3-dimethylaminopropyl)carbodiimide hydrochloride and N-methylmorpholine: m.p. 223-225 ${ }^{\circ} \mathrm{C}$ (from ethyl acetate); $[x]_{\mathrm{D}}{ }^{20}-14.3^{\circ}(c 0.5, \mathrm{MeOH})$; TLC (silica gel plates $60 \mathrm{~F}-254$, Merck) $R_{\mathrm{f} 1}\left(\mathrm{CHCl}_{3}-\mathrm{EtOH} 9: 1\right) 0.55 ; R_{\mathrm{f} 2}(1-\mathrm{BuOH}-\mathrm{AcOH}-$ water 60:20:20) 0.90; $v_{\max }(\mathrm{KBr}$ disk $) / \mathrm{cm}^{-1} 3343,3282,1708$, 1658, $1542 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{Me}_{2} \mathrm{SO}\right) 8.55$ ($1 \mathrm{H}, \mathrm{m}$, Dap $\beta-\mathrm{NH}$), 8.47 ($1 \mathrm{H}, \mathrm{s}, \mathrm{Aib} \mathrm{NH}$), 7.71 ($4 \mathrm{H}, \mathrm{m}, p \mathrm{BrBz}$), 7.64 ($1 \mathrm{H}, \mathrm{d}$, Dap $x-$ NH), 7.31 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Z}$-aromatic), 7.25 ($1 \mathrm{H}, \mathrm{q}, \mathrm{NHCH} \mathrm{N}_{3}$), 7.14 (1 H, s, Aib NH), $5.01\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Z}-\mathrm{CH}_{2}\right), 4.17(1 \mathrm{H}, \mathrm{m}, \operatorname{Dap} x-\mathrm{CH})$, $3.55\left(2 \mathrm{H}, \mathrm{m}, \operatorname{Dap} \beta-\mathrm{CH}_{2}\right), 2.52\left(3 \mathrm{H}, \mathrm{d}, \mathrm{NHCH}_{3}\right), 1.30(3 \mathrm{H}, \mathrm{s}$, Aib $\beta-\mathrm{CH}_{3}$), $1.26\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Aib} \beta-\mathrm{CH}_{3}\right)$, $1.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Aib} \beta-\mathrm{CH}_{3}\right)$. Amino acid analysis (C. Erba model 3A 27): Dap 0.96, Aib 2.04.
$\mathrm{Z}-\mathrm{L}-\mathrm{Dab}(p \mathrm{BrBz})-(\mathrm{Aib})_{2}-\mathrm{NHMe}$ (2) was obtained in 68% yield from $\mathrm{Z}-\mathrm{L}-\mathrm{Dap}(p \mathrm{BrBz})-\mathrm{OH}$ and $\mathrm{H}-(\mathrm{Aib})_{2}-\mathrm{NHMe}$ as described above for $\mathrm{Z}-\mathrm{L}-\mathrm{Dab}(p \mathrm{BrBz})-(\mathrm{Aib})_{2}$-NHMe: m.p. 154 $156^{\circ} \mathrm{C}$ (from MeOH -diethyl ether); $[x]_{\mathrm{D}}{ }^{20}-17.6^{\circ}$ (c 0.5 , $\mathrm{MeOH}) ; R_{\mathrm{f} 1} 0.40 ; R_{\mathrm{f} 2} 0.85 ; v_{\max }\left(\mathrm{KBr}\right.$ disk)$/ \mathrm{cm}^{-1} 3368,3353$, $3310,1708,1669,1626,1547 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{Me}_{2} \mathrm{SO}\right) 8.61(1 \mathrm{H}, \mathrm{s}$, Aib NH), 8.57 ($1 \mathrm{H}, \mathrm{m}, \mathrm{Dab} \gamma-\mathrm{NH}$), 7.74 ($1 \mathrm{H}, \mathrm{d}, \mathrm{Dab} x-\mathrm{NH}$), 7.73 ($4 \mathrm{H}, \mathrm{m}, \mathrm{pBrBz}$), 7.32 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Z}$-aromatic), 7.25 ($1 \mathrm{H}, \mathrm{q}$, $\mathrm{NHCH} 3), 7.09(1 \mathrm{H}, \mathrm{s}, \mathrm{Aib} \mathrm{NH}), 4.99\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Z}-\mathrm{CH}_{2}\right), 3.99(1 \mathrm{H}$, $\mathrm{m}, \mathrm{Dab} x-\mathrm{CH}$), 3.31 ($2 \mathrm{H}, \mathrm{m}$, Dab $\gamma-\mathrm{CH}_{2}$), 2.52 (3 H , d, $\left.\mathrm{NHCH}_{3}\right), 1.83\left(2 \mathrm{H}, \mathrm{m}, \mathrm{Dab} \beta-\mathrm{CH}_{2}\right), 1.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Aib} \beta-\mathrm{CH}_{3}\right)$, $1.30\left(6 \mathrm{H}, \mathrm{s}, \mathrm{Aib} \beta-\mathrm{CH}_{3}\right), 1.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{Aib} \beta-\mathrm{CH}_{3}\right)$. Amino acid analysis: Dab 1.03, Aib 1.97.

Crystal Data for Z-L-Dap(pBrBz)-(Aib) $\mathbf{2}_{2}$-NHMe (1).$\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Br}, ~ M=604.5$. Orthorhombic, $a=18.155(2)$, $b=16.027(2), c=10.240(2) \AA, V=2979.5(8) \AA^{3}$, space group $P 2,2,2, Z=4, D_{\text {c }}=1.348 \mathrm{~g} \mathrm{~cm}^{3}$. Crystal dimensions: $0.20 \times 0.20 \times 0.25 \mathrm{~mm}, \mu(\mathrm{Mo}-\mathrm{K} x)=14.09 \mathrm{~cm}^{-1}$. Final R value 0.056 , final R_{w}-value 0.057 .

Crystal Data for Z-L-Dab($p \mathrm{BrBz}$)-(Aib) 2_{2}-NHMe Monohydrate (2). $-\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Br} \cdot \mathrm{H}_{2} \mathrm{O}, M=636.5$. Triclinic, $a=$ 14.512(2), $b=14.227(2), c=8.202(2) \AA, x=92.7(2)^{\circ}, \beta=$ 94.3(2) ${ }^{\circ}, \gamma=105.7(2)^{\circ}, V=1622(2) \AA^{3}$, space group $P 1, Z=$ $2, D_{\mathrm{c}}=1.304 \mathrm{~g} \mathrm{~cm}^{3}$. Crystal dimensions: $0.16 \times 0.24 \times 0.40$ $\mathrm{mm}, \mu(\mathrm{Mo}-\mathrm{K} x)=13.00 \mathrm{~cm}^{-1}$. Final R-value 0.073 .
X-Ray Structure Determination of Z-L-Dab $(p \mathrm{BrBz})$-(Aib) $\mathbf{2}^{-}$ NHMe (1) and $\mathrm{Z}-\mathrm{L}-\mathrm{Dab}(\mathrm{pBrBz})-(\mathrm{Aib})_{2}$-NHMe Monohydrate (2).-Colourless crystals of 1 and 2 were grown from ethyl acetate-light petroleum (b.p. $60-80^{\circ} \mathrm{C}$) and methanol-diethyl ether solutions, respectively. Philips PW 1100 four-circle diffractometer; $0-20$ scan mode up to $20=56^{\circ}$; graphitemonochromated Mo-Kx radiation ($i=0.7107 \AA$); 3879 and 7778 unique reflections for 1 and 2 , respectively, were corrected for Lorentz and polarization effects but not for absorption. 1116 Reflections with $F \geqslant 7 \sigma(F)$ for 1, and 3674 reflections with $F \geqslant 6 \sigma(F)$ for 2, respectively, were considered observed. Both structures were solved by direct methods using SHELXS-86. ${ }^{6}$ Refinement was carried out by blocked least-squares, with weight $w=1 /\left[\sigma^{2}(F)+0.0021 F^{2}\right]$ for 1 , and unit weight for 2. The thermal parameters were anisotropic for all non-hydrogen atoms. Hydrogen atoms of both structures were in part located on a difference Fourier map and in part calculated, and they were not refined. All calculations were performed on a MicroVAX 3400 Digital Computer with SHELX- 76 software. ${ }^{7}$

Tables of fractional atomic co-ordinates, positional parameters of hydrogen atoms, anisotropic thermal parameters, bond distances, and bond angles for $\mathbf{1}$ and $\mathbf{2}$ are available from the Cambridge Crystallographic Data Centre. \dagger

Results

The molecular structures of Z-L-Dap $(p \mathrm{BrBz})-(\mathrm{Aib})_{2}-\mathrm{NHMe}$ (1) and of the two crystallographically independent molecules (indicated as \mathbf{A} and \mathbf{B}, respectively) of $\mathrm{Z}-\mathrm{L}-\mathrm{Dab}(p \mathrm{BrBz})-(\mathrm{Aib})_{2}-$

[^0]NHMe monohydrate (2), determined by X-ray diffraction, are illustrated in Figs. 1 and 2, respectively. Relevant torsion angles ${ }^{8}$ are reported in Table 1. Geometrical parameters for intra- and inter-molecular hydrogen bonds ${ }^{913}$ are summarized in Table 2.

Bond distances and bond angles for $\mathbf{1}$ and 2 (deposited) are in general agreement with previously reported values for the geometry of the Z-urethane moiety, ${ }^{14}$ the secondary amide ${ }^{15.16}$ and peptide ${ }^{17}$ groups, and the Aib ${ }^{18.19}$ residue.

The conformation of the Z-urethane group in both $\mathbf{1}$ and $\mathbf{2}$ is the usual trans, trans (θ^{1} and ω_{0} torsion angles) or type-b conformation. ${ }^{14}$ All secondary amide and peptide groups are trums, but some distortion from planarity is observed.
The backbone of Z-L-Dap $(p \mathrm{BrBz})-(\mathrm{Aib})_{2} \mathrm{NHMe}(1)$ is folded

Fig. 1 X-Ray diffraction structure of Z-L-Dap $(p \mathrm{BrBz})-(\mathrm{Aib})_{2}-\mathrm{NHMe}$ (1) with atom numbering. The intramolecular hydrogen bonds are indicated as dashed lines.
into two consecutive β-bends stabilized by intramolecular hydrogen bonds between the NH group of $\operatorname{Aib}(3)$ and the carbonyl oxygen of the urethane moiety, and between the NH group of the C-terminal methylamido moiety and the carbonyl oxygen of L-Dap(1), respectively. Both β-bends are (left-handed helical) type-III', having the backbone torsion angles in the ranges $63-54^{\circ}(\varphi)$, and $47-16^{\circ}(\psi) .^{2022} \mathrm{~A} \mathrm{C}_{1}{ }^{\mathrm{B}} \cdots \mathrm{O}_{1}$ short distance ($2.79 \AA$) is observed in the l-Dap residue. The conformation of the l-Dap side chain, defined by rotations about the $\mathrm{C}^{\boldsymbol{\alpha}}-\mathrm{C}^{\beta}$ and $\mathrm{C}^{\beta}-\mathrm{N}^{\beta}$ bonds, is gauche ${ }^{-}$, gauche ${ }^{-}$.

Similarly to 1, both independent molecules \mathbf{A} and \mathbf{B} of Z-I.$\mathrm{Dab}(p \mathrm{BrBz})-(\mathrm{Aib})_{2}$-NHMe monohydrate (2) are folded into two consecutive β-bends stabilized by two intramolecular hydrogen bonds, between the NH group of $\operatorname{Aib}(3)$ and the carbonyl oxygen of the urethane moiety, and between the NH group of the C-terminal methylamido moiety and the carbonyl oxygen of $\mathrm{L}-\mathrm{Dab}(1)$, respectively. The N -terminal hydrogen bond is weaker in molecule \mathbf{A} than in molecule B. ${ }^{9}{ }^{11}$
In both molecules the sets of φ, ψ torsion angles are close to those of an ideal 3_{10}-helix, ${ }^{23.24}$ but they have negative signs, corresponding to the right-handed helical screw sense, in molecule A, while positive in molecule B, giving rise to a lefthanded 3_{10}-helix. The $C_{1}{ }^{\beta} \cdots O_{1}$ short contact, observed in the left-handed helical L-Dap-containing peptide 1 , is also found in the l-Dab residue of the left-handed molecule B of $2(2.75 \AA)$, but not in the right-handed molecule A (3.21 \AA). The torsion angles about the $\mathrm{C}^{\boldsymbol{x}}-\mathrm{C}^{\beta}, \mathrm{C}^{\beta}-\mathrm{C}^{\gamma}$, and $\mathrm{C}^{\gamma}-\mathrm{N}^{\gamma}$ bonds of the L-Dab side chain are gauche ${ }^{-}$, trans, and sker- ${ }^{-}$, respectively, in molecule A, but gauche ${ }^{-}$, gauche ${ }^{-}$, and trans, respectively, in molecule B. These values should be compared with the trans, trans disposition of the side chain in the crystal structure of L Dab hydrochloride. ${ }^{25.26}$. As a result, in both molecules A and B the carbonyl group of the p-bromobenzoyl moiety is oriented on the same side of the molecule as the Z -urethane N^{x}-protecting group. Overall, a pseudo-symmetry, violated essentially by the identical L-configuration of the $\mathrm{Dab} \mathrm{C}^{\boldsymbol{x}}$ atom, relates molecule A to molecule B.
In the packing mode of $\mathrm{Z}-\mathrm{L}-\mathrm{Dap}(p \mathrm{BrBz})-(\mathrm{Aib})_{2}-\mathrm{NHMe}$ (1) the $\mathrm{N}_{1}-\mathrm{H}$ and $\mathrm{N}_{2}-\mathrm{H}$ groups are hydrogen-bonded to the $\mathrm{O}_{2}=\mathrm{C}_{2}{ }^{\prime}$ and $\mathrm{O}_{3}=\mathrm{C}_{3}{ }^{\prime}$. respectively, of a $(-x,-1 / 2+1,1 / 2-$ \Rightarrow) symmetry-related molecule. The geometry of the $\mathrm{N}_{2}-\mathrm{H} \cdots$

Fig. 2 X-Ray diffraction structure of Z-L- $\operatorname{Dab}(p \mathrm{BrBz})-(\mathrm{Aib})_{2}-\mathrm{NHMe}$ monohydrate (2) with atom numbering. The two crystallographically independent molecules are indicated as \mathbf{A} and \mathbf{B}, respectively. The intramolecular hydrogen bonds are indicated as dashed lines.

Table 1 Selected torsion angles $\left({ }^{\circ}\right)$ with estimated standard deviations in parentheses

Angle			Z-L-Dab-(pBrBz)-(Aib) $\mathbf{2}^{-}$- ${ }^{\text {NHMe (2) }}$	
			Molecule A	Molecule B
$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{O}_{\mathbf{u}}-\mathrm{C}_{0}{ }^{\text {' }}$	$0^{\mathbf{2}}$	-90(1)	80(2)	-82(2)
$\mathrm{C}(7)-\mathrm{O}_{\mathrm{u}}-\mathrm{C}_{0}-\mathrm{N}_{1}$	0^{1}	180(1)	175(1)	-177(1)
$\mathrm{O}_{\mathrm{u}}-\mathrm{C}^{\prime}-\mathrm{N}_{1}-\mathrm{C}_{1}{ }^{2}$	ω_{0}	174(1)	-179(1)	-177(1)
$\mathrm{Co}^{\prime}{ }^{\prime}-\mathrm{N}_{1}-\mathrm{C}_{1}{ }^{2}-\mathrm{C}_{1}{ }^{\prime}$	φ_{1}	54(2)	-67(2)	53(2)
$\mathrm{N}_{1}-\mathrm{C}_{1}{ }^{\text {a }}-\mathrm{C}_{1}{ }^{\prime}-\mathrm{N}_{2}$	ψ_{1}	47(1)	-27(2)	42(2)
$\mathrm{C}_{1}{ }^{\boldsymbol{x}}-\mathrm{C}_{1}{ }^{\prime}-\mathrm{N}_{2}-\mathrm{C}_{2}{ }^{\text {a }}$	ω_{1}	174(1)	180(2)	175(2)
$\mathrm{C}_{1}{ }^{-}-\mathrm{N}_{2}-\mathrm{C}_{2}{ }^{\text {a }}$ - $\mathrm{C}_{2}{ }^{\prime}$	φ_{2}	63(2)	-57(2)	57(2)
$\mathrm{N}_{2}-\mathrm{C}_{2}{ }^{\text {a }}-\mathrm{C}_{2}{ }^{\prime}-\mathrm{N}_{3}$	ψ_{2}	16(2)	-28(2)	25(2)
$\mathrm{C}_{2}{ }^{\text {a }}$ - $\mathrm{C}_{2}{ }^{\prime}-\mathrm{N}_{3}-\mathrm{C}_{3}{ }^{\text {a }}$	ω_{2}	-176(1)	180(1)	180(2)
$\mathrm{C}_{2}{ }^{-}-\mathrm{N}_{3}-\mathrm{C}_{3}{ }^{3}-\mathrm{C}_{3}{ }^{\prime}$	φ_{3}	54(2)	-57(2)	58(2)
$\mathrm{N}_{3}-\mathrm{C}_{3}{ }^{3}-\mathrm{C}_{3}{ }^{\prime}-\mathrm{N}_{4}$	ψ_{T}	38(2)	-33(2)	34(2)
$\mathrm{C}_{3}{ }^{2}-\mathrm{C}_{3}{ }^{-}-\mathrm{N}_{\mathrm{T}}-\mathrm{C}_{\mathrm{T}}$	$\omega_{\text {T }}$	-177(2)	-179(2)	174(2)
$\mathrm{N}_{1}-\mathrm{C}_{1}{ }^{\text {a }}-\mathrm{C}_{1}{ }^{\text {B }}{ }^{-1} \mathrm{~N}_{1}{ }^{\text {a }}$		-49(2)	-	-
$\mathrm{C}_{1}{ }^{\text {² }} \mathrm{C}_{1}{ }^{\text {B }}-\mathrm{N}_{1}{ }^{\mathrm{B}}-\mathrm{C}(8)$		-80(1)	-	-
$\mathrm{C}_{1}{ }^{\mathrm{B}}-\mathrm{N}_{1}{ }^{\mathrm{B}}-\mathrm{C}(8)-\mathrm{C}(9)$		172(1)	-	-
$\mathrm{N}_{1}{ }^{\text {- }} \mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$		-165(1)	-	-
$\mathrm{N}_{1}-\mathrm{C}_{1}{ }^{\text {² }}-\mathrm{C}_{1}{ }^{\text {B }}-\mathrm{C}_{1}{ }^{r}$		-	-72(2)	-53(2)
$\mathrm{C}_{1}{ }^{3}-\mathrm{C}_{1}{ }^{\mathrm{B}}-\mathrm{C}_{1}{ }^{r}-\mathrm{N}_{1}{ }^{r}$		-	174(1)	-70(2)
$\mathrm{C}_{1}{ }^{\mathrm{B}}-\mathrm{C}_{1}{ }^{r}-\mathrm{N}_{1}{ }^{r}-\mathrm{C}(8)$		-	-145(2)	175(2)
$\mathrm{C}_{1}{ }^{r} \mathrm{~N}_{1}{ }^{\gamma}-\mathrm{C}(8)-\mathrm{C}(9)$		-	179(1)	172(1)
$\mathrm{N}_{1}{ }^{2}-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)$		-	172(2)	-169(2)

Table 2 Intra- and inter-molelcular hydrogen bond parameters for Z-L-Dap $(p \mathrm{BrBz})-(\mathrm{Aib})_{2}-\mathrm{NHMe}(1)$ and $\mathrm{Z}-\mathrm{L}-\mathrm{Dab}(\mathrm{priBz})-(\mathrm{Aib})_{2}-\mathrm{NHMe}$ monohydrate (2)

Compound	Donor D-H	Acceptor A	Symmetry equivalence of A	$\begin{aligned} & \text { Distance } / \AA \\ & \text { D...A } \end{aligned}$	$\begin{aligned} & \text { Distance } / \AA \\ & \text { H } \ldots \text { A } \end{aligned}$	$\begin{aligned} & \text { Angle }{ }^{\circ} \\ & \text { D-H . . A } \end{aligned}$
Z-L-Dap $(p \mathrm{BrBz})-(\mathrm{Aib})_{2}-\mathrm{NHMe}(1)$	$\mathrm{N}_{3}-\mathrm{H}$	O_{0}	$x, y=$	3.08	2.01	156
	$\mathrm{N}_{\mathrm{T}}-\mathrm{H}$	O_{1}	$x, x=$	3.07	2.01	159
	$\mathrm{N}_{1}-\mathrm{H}$	O_{2}	$-x,-1 / 2+1,1 / 2-=$	2.79	1.73	164
	$\mathrm{N}_{2}-\mathrm{H}$	O_{3}	$-x,-1 / 2+y, 1 / 2-=$	2.98	2.34	116
	$\mathrm{N}_{1}{ }^{\text {B }}$ - H	O(1)	$1 / 2-x, 1-1,-1 / 2+=$	2.96	1.90	163
$\begin{aligned} & \mathrm{Z}-\mathrm{L}-\mathrm{Dap}(p \mathrm{BrBz})-(\mathrm{Aib})_{2}-\mathrm{NHMe} \\ & \text { Monohydrate (2) } \end{aligned}$						
	$\mathrm{N}_{3 \mathrm{~A}}-\mathrm{H}$	$\mathrm{O}_{0 \mathrm{~A}}$	$x, y=$	3.22	2.25	149
	$\mathrm{N}_{\text {TA }}$ - H	$\mathrm{O}_{1 \mathrm{~A}}$	x, $1,=$	2.94	1.93	151
	$\mathrm{N}_{3 \mathrm{~B}}-\mathrm{H}$	$\mathrm{O}_{0 \mathrm{~B}}$	$x, y,=$	3.10	2.11	150
	$\mathrm{N}_{\text {TB }}-\mathrm{H}$	O_{18}	x, $1,=$	3.08	2.05	153
	$\mathrm{N}_{14}-\mathrm{H}$	$\mathrm{O}(1)_{\mathrm{B}}$	$x, y,-1+=$	2.98	1.93	162
	$\mathrm{N}_{1 \mathrm{~B}}-\mathrm{H}$	$\mathrm{O}(1)_{\text {A }}$	$x, y,=$	2.83	1.80	154
	$\mathrm{N}_{2 \mathrm{~A}}-\mathrm{H}$	$\mathrm{O}(2)_{\text {w }}$	$x, 1+y,-1+=$	2.91	1.93	148
	$\mathrm{N}_{2 \mathrm{~B}}-\mathrm{H}$	$\mathrm{O}(1)_{\text {w }}$	$1+x, y=$	2.85	1.84	151
	$\mathrm{N}_{14}{ }^{\gamma}-\mathrm{H}$	$\mathrm{O}_{3 \mathrm{~B}}$	$x, 1+1,=$	3.04	2.05	148
	$\mathrm{N}_{18}{ }^{\gamma}-\mathrm{H}$	$\mathrm{O}_{3 \mathrm{~A}}$	$1+x, 1+1+=$	3.08	2.21	135
	$\mathrm{O}(1)_{w}-\mathrm{H}_{1}$	$\mathrm{O}_{3 \mathrm{~A}}$	$x, y=$	2.76	1.84	177
	$\mathrm{O}(1)_{w}-\mathrm{H}_{2}$	$\mathrm{O}(1)_{\text {A }}$	$-1+x, r=$	2.79	1.84	178
	$\mathrm{O}(2)_{w}-\mathrm{H}_{4}$	$\mathrm{O}_{3 \mathrm{~B}}$	$x, y=$	2.85	1.89	179
	$\mathrm{O}(2){ }_{w}-\mathrm{H}_{2}$	$\mathrm{O}(1)_{\mathrm{B}}$	$x,-1+r=$	2.79	1.88	176

O_{3} interaction is rather distorted. ${ }^{9-11}$ Thus, along the b direction rows of molecules are generated, which are also linked in the c direction through $\mathrm{N}_{1}{ }^{\mathrm{B}}-\mathrm{H} \cdots \mathrm{O}(1)=\mathrm{C}(8)(1 / 2-x, 1-$ $y,-1 / 2+z$) hydrogen bonds. Packing is then completed through van der Waals interactions.

A complex network of hydrogen bonds characterizes the packing mode of $\mathrm{Z}-\mathrm{L}-\mathrm{Dab}(\mathrm{pBrBz})-(\mathrm{Aib})_{2}-\mathrm{NHMe}$ monohydrate (2). Molecule \mathbf{B} is linked to molecule \mathbf{A} of the same asymmetric unit by a hydrogen bond between the $\mathrm{N}_{1 B}-\mathrm{H}$ and $\mathrm{O}(1)_{A}=\mathrm{C}(8)_{A}$ groups, while the $\mathrm{N}_{1 \mathrm{~A}}-\mathrm{H}$ group is hydrogen-bonded to the $\mathrm{O}(1)_{\mathrm{B}}=\mathrm{C}(8)_{\mathrm{B}}$ group of a $(x, y,-1+z)$ symmetry-related molecule. In the same asymmetric unit the two co-crystallized water molecules act as hydrogen bond donors to the $\mathrm{O}_{3 \mathrm{~A}}=\mathrm{C}_{3 A^{\prime}}$ and $\mathrm{O}_{3 \mathrm{~B}}=\mathrm{C}_{3 \mathrm{~B}^{\prime}}$ groups, respectively. In addition, the $\mathrm{O}(1)_{\mathrm{w}}$ is hydrogen-bonded to the $\mathrm{O}(1)_{\mathrm{A}}=\mathrm{C}(8)_{\mathrm{A}}$ group of a ($-1+x, y,=$) symmetry-related molecule, and the $\mathrm{O}(2)_{\mathbf{w}}$ is hydrogen-bonded to the $\mathrm{O}(1)_{\mathrm{B}}=\mathrm{C}(8)_{\mathrm{B}}$ group of a $(x,-1+y,=)$ symmetry-related molecule. Both water molecules also act as hydrogen bond
acceptors: the $\mathrm{N}_{2 \mathrm{~B}}-\mathrm{H}$ group is linked to a $(1+x, y, z) \mathrm{O}(1)_{\mathrm{w}}$ and the $\mathrm{N}_{2 \mathrm{~A}}-\mathrm{H}$ group is linked to a $(x, 1+y,-1+z) \mathrm{O}(2)_{\mathrm{w}}$. Finally, the $\mathrm{N}_{1 \mathrm{~A}} \gamma-\mathrm{H}$ group is hydrogen-bonded to a $(x, 1+y$, $\Rightarrow \mathrm{O}_{3 \mathrm{~B}}=\mathrm{C}_{3 \mathrm{~B}}{ }^{\prime}$ group and the $\mathrm{N}_{1 \mathrm{~B}} \gamma-\mathrm{H}$ group is hydrogen-bonded to a $(1+x, y, 1+=) \mathrm{O}_{3 \mathrm{~A}}=\mathrm{C}_{3 \mathrm{~A}}{ }^{\prime}$ group, respectively.

Interestingly, in the packing mode of $\mathrm{Z}-\mathrm{L}-\mathrm{Dap}(p \mathrm{BrBz})-(\mathrm{Aib})_{2}-$ NHMe (1) only backbone-to-backbone and side chain-to-side chain intermolecular hydrogen bonds are observed. Conversely, the packing of $\mathrm{Z}-\mathrm{L}-\mathrm{Dab}(p \mathrm{BrBz})-(\mathrm{Aib})_{2}$-NHMe monohydrate (2) is characterized by intermolecular hydrogen bonds between the side-chain $\mathrm{N}-\mathrm{H}$ groups and backbone $\mathrm{C}=\mathrm{O}$ groups, while the backbone $\mathrm{N}-\mathrm{H}$ groups are hydrogen-bonded either to sidechain $\mathrm{C}=\mathrm{O}$ groups or to water molecules.

Discussion

It is well established that it is the right-handed x-helical screw sense that is favoured by $\mathrm{C}^{\boldsymbol{x}}$-trisubstituted $\mathrm{L}-\mathrm{x}$-amino acids.

This finding has been mainly ascribed to the unfavourable steric interaction occurring between the side-chain C^{β} atom and the carbonyl oxygen of the same residue in the left-handed helical conformation. ${ }^{27}{ }^{30} \mathrm{~A}$ similar $\mathrm{C}_{\mathrm{i}}{ }^{\beta} \cdots \mathrm{O}_{i}$ short distance is experienced by either the pro-L or pro-D C^{β} atom of the Aib residue in the 3_{10}-helical conformation, depending on whether the helix is left- or right-handed, respectively. Such an interaction cannot be avoided by a C^{α}-tetrasubstituted α-amino acid, irrespective of the helix handedness, ${ }^{18}$ but its effect is not large enough to prevent the Aib residue from being the strongest known helix inducer. ${ }^{1}{ }^{5}$ In this paper we have shown that a short $C_{i}{ }^{\beta} \cdots O_{i}$ distance is also observed when a C^{α} trisubstituted $\mathrm{L}-\mathrm{x}$-amino acid residue is present in a lefthanded 3_{10}-helix. However, despite this unfavourable contact, the l-Dap-containing peptide 1 adopts exclusively the lefthanded helical screw sense in the crystal state, while both screw senses are seen in the X-ray structure of the L-Dab-containing peptide 2.

In this connection, it is worth pointing out that a reversal of the usual relationship between amino acid configuration and helical handedness was also shown to occur in poly- α-amino acids, such as poly(β-benzyl)-L-aspartate and some related compounds. ${ }^{31}{ }^{34}$ Such behaviour was explained by an energetic balance of side-chain nonbonded interactions (which are less unfavourable in the right-handed helix) and backbone-side chain electrostatic interactions which, given a proper orientation of the side chain, may favour the lefthanded screw sense. ${ }^{35.36}$

In peptides 1 and 2, although packing effects could not be ruled out, intermolecular interactions analogous to those operative for poly(β-benzyl)-L-aspartate may play a role in determining the observed helical screw senses. Unfortunately, experimental data on poly $\left(\mathrm{N}^{\mathrm{B}}-\mathrm{pBrBz}\right)-\mathrm{L}-\mathrm{Dap}$ or poly $\left(\mathrm{N}^{\mathrm{r}}\right.$ $p \mathrm{BrBz})$-L-Dab are not available, while a right-handed helical conformation has been determined for poly $\left(\mathrm{N}^{\delta}-\mathrm{p} \mathrm{BrBz}\right)-\mathrm{L}-\mathrm{Orn}$ (Orn, ornithine, which differs from Dab and Dap by one and two additional methylene groups, respectively, in the side chain) on the basis of a X-ray diffraction study of oriented films. ${ }^{37}$ In the light of the results reported in the present contribution poly $\left(\mathrm{N}^{\mathrm{B}}-\mathrm{p} \mathrm{BrBz}\right)$-L-Dap and poly $\left(\mathrm{N}^{\gamma}-\mathrm{pBrBz}\right)-\mathrm{L}-\mathrm{Dab}$ may well deserve a detailed conformational study.
The first occurrence of a chiral peptide assuming both helical screw senses in the crystal state has been documented in our laboratory for Ac-(Aib) $\mathbf{2}_{2}$-L-Iva-(Aib) $\mathbf{2}_{2}$-OMe (Ac, acetyl; Iva, isovaline; OMe, methoxy), where the only chiral centre is the quaternary Iva C^{z} atom. ${ }^{38}$ Additional examples of chiral peptides showing both helical screw senses in the crystal state have been recently found by us in some Aib-rich peptides containing other chiral C^{α}-tetrasubstituted amino acid residues, namely C^{α}-methylphenylalanine and C^{α}-methylleucine. ${ }^{39-41}$

On the other hand, a number of crystal structures indicate that a single chiral C^{α}-trisubstituted amino acid residue is sufficient to impart only one helical screw sense when incorporated into an Aib-rich peptide sequence. ${ }^{42-47}$ The only occurrence of both helical screw senses in a peptide containing Aib and C^{α}-trisubstituted protein amino acids has been recently reported for Z-d-Val-(Aib) ${ }_{2}$-L-Phe-OMe, where the two chiral residues have opposite configuration and hence opposite screw sense preferences. ${ }^{48}$
To the best of our knowledge, the structure of Z-L-$\mathrm{Dab}(\mathrm{pBrBz})-(\mathrm{Aib})_{2}-\mathrm{NMHe}$ (2) described here represents the first observation of a peptide containing a single chiral C^{α} trisubstituted amino acid residue assuming both helical screw senses in the crystal state.

In addition, the present structural investigation suggests that the incorporation of a side-chain-functionalized amino acid residue, bearing potential hydrogen-bonding donor and acceptor groups, into a short Aib sequence does not interfere
with the intramolecular hydrogen-bonding scheme typical of 3_{10}-helical Aib-rich peptides.

Acknowledgements

This work was supported by the Italian National Research Council (C.N.R.) 'Progetto Finali==ato Chimica Fine II.' The skilful technical assistance of Mr. Vittorio Moretto is gratefully acknowledged.

References

1 I. L. Karle and P. Balaram, Biochemistry, 1990, 29, 6747.
2 B. V. V. Prasad and P. Balaram, CRC Crit. Rev. Biochem., 1984, 16, 307.

3 C. Toniolo, G. M. Bonora, A. Bavoso, E. Benedetti, B. Di Blasio, V. Pavone and C. Pedone, Biopolymers, 1983, 22, 205
4 C. Toniolo and E. Benedetti, Macromolecules, 1991, 24, 4004.
5 K. T. O'Neil and W. F. DeGrado, Science, 1990, 250, 646.
6 G. M. Sheldrick, in Crystallographic Computing 3, eds. G. M. Sheldrick, C. Krüger and R. Goddard, Oxford University Press, Oxford, 1985, p. 175.
7 G. M. Sheldrick, SHELX-76, Program for Crystal Structure Determinations, University of Cambridge, 1976.
8 IUPC-IUB Commission on Biochemical Nomenclature, Biochemistry, 1970, 9, 3471.
9 C. Ramakrishnan and N. Prasad, Int. J. Protein Res., 1971, 3, 209.
10 R. Taylor, O. Kennard and W. Versichel, Acta Crystallogr., Sect. B, 1984, 40, 280.
11 C. H. Görbitz, Acta Crystallogr., Sect. B, 1989, 45, 390.
12 I. D. Brown, Acta Crystallogr., Sect. A, 1976, 32, 24.
13 J. Mitra and C. Ramakrishnan, Int. J. Pept. Protein Res., 1977, 9, 27.
14 E. Benedetti, C. Pedone, C. Toniolo, M. Dudek, G. Nemethy and H. A. Scheraga, Int. J. Pept. Protein Res., 1983, 21, 163.

15 L. Leiserowitz and M. Tuval, Acta Crystallogr., Sect. B, 1978, 34, 1230.

16 P. Chakrabarti and J. D. Dunitz, Helv. Chim. Acta, 1982, 65, 1555.
17 E. Benedetti, in Chemistry and Biochemistry of Amino Acids. Peptides and Proteins, ed. B. Weinstein, Dekker, New York, 1982, vol. 6, p. 105.
18 Y. Paterson, S. M. Rumsey, E. Benedetti, G. Nèmethy and H. A. Scheraga, J. Am. Chem. Soc., 1981, 103, 2947.
19 G. Valle, M. Crisma, F. Formaggio, C. Toniolo and G. Jung, Liehigs, Ann. Chem., 1987, 1055.
20 C. M. Venkatachalam, Biopolymers, 1968, 6, 1425.
21 C. Toniolo, CRC Crit. Rev. Biochem., 1980, 9, 1.
22 G. D. Rose, L. M. Gierasch and J. A. Smith, Adv. Protein Chem., 1985, 37, 1.
23 C. Toniolo and E. Benedetti, TIBS, 1991, 16, 350.
24 E. Benedetti, B. Di Blasio, V. Pavone, C. Pedone, A. Santini, M. Crisma and C. Toniolo, in Molecular Conformation and Biological Interactions, eds. P. Balaram and S. Ramaseshan, Indian Academy of Sciences, Bangalore, 1991, p. 497.
25 H. Hinazumi and T. Mitsui, Acta Crystallogr., Sect. B, 1971, 27, 2152.
26 P. S. Naganathan and K. Venkatesan, Acta Crystallogr., Sect. B, 1971, 27, 2159.
27 L. Pauling, R. B. Corey and H. R. Branson, Proc. Natl. Acad. Sci. USA, 1951, 37, 205.
28 M. L. Huggins, J. Am. Chem. Soc., 1952, 74, 3963.
29 J. Hermans, A. G. Anderson and R. H. Yun, Biochemistry, 1992, 31, 5646.

30 R. Fairman, S. J. Anthony-Cahill and W. F. DeGrado, J. Am. Chem. Soc., 1992, 114, 5458.
31 E. M. Bradbury, L. Brown, A. R. Downie, A. Elliot, R. D. B. Fraser and W. E. Hanby, J. Mol. Biol., 1962, 5, 230.
32 M. Goodman, F. Boardman and I. Listowsky, J. Am. Chem. Soc., 1963, 85, 2491.
33 E. M. Bradbury, B. G. Carpenter and H. Goldman, Biopolymers, 1968, 6, 837.
34 E. H. Erenich, R. H. Andreatta and H. A. Scheraga, J. Am. Chem. Soc., 1970, 92, 1116.
35 J. F. Yan, G. Vanderkooi and H. A. Scheraga, J. Chem. Phys., 1968, 49. 2713.

36 J. F. Yan, F. A. Momany and H. A. Scheraga, J. Am. Chem. Soc., 1970, 92, 1109.
37 S. Sasaki and Y. Ywanami, Macromolecules, 1988, 21, 3389.
38 G. Valle, M. Crisma, C. Toniolo, R. Beisswenger, A. Rieker and G. Jung, J. Am. Chem. Soc., 1989, 111, 6828.

39 C. Toniolo, M. Crisma, F. Formaggio, G. Valle, G. Cavicchioni, G. Précigoux, A. Aubry and J. Kamphuis, Biopolymers, in the press.
40 F. Formaggio, S. Pegoraro, M. Crisma, G. Valle, C. Toniolo, G. Précigoux, W. H. J. Boesten, H. E. Schoemaker and J. Kamphuis, J. Biomol. Siruct. Drin., in the press.
41 M. Pantano, F. Formaggio, M. Crisma, G. M. Bonora, C. Toniolo, A. Aubry, D. Bayeul, A. Dantant, G. Prècigoux, W. H. J. Boesten, H. E. Schoemaker and J. Kamphuis, Pept. Res., submitted.

42 A. Bavoso, E. Benedetti, B. Di Blasio, V. Pavone, C. Pedone, C. Toniolo, G. M. Bonora, F. Formaggio and M. Crisma, J. Biol. Struct. Dın., 1988, 5, 803.
43 E. Benedetti, A. Bavoso, B. Di Blasio. P. Grimaldi, V. Pavone, C. Pedone, C. Toniolo and G. M. Bonora, Int. J. Biomol. Macromol., 1985, 7, 81.

44 C. Toniolo, G. M. Bonora. E. Benedetti, A. Bavoso, B. Di Blasio, V. Pavone and C. Pedone, Biopolymers, 1983, 22, 1335.
45 E. Benedetti, A. Bavoso, B. Di Blasio, V. Pavone, C. Pedone, C. Toniolo, G. M. Bonora and M. Crisma, Int. J. Pept. Protein Res., 1983, 22, 385.
46 R. Bosch, G. Jung and W. Winter, Liebigs Ann. Chem., 1982, 1322.
47 B. V. V. Prasad, N. Shamala, R. Nagaraj and P. Balaram, Acto Crystallogr., Sect. B, 1980, 36, 107.
48 V. Pavone, A. Lombardi, F. Nastri, M. Saviano, B. Di Blasio, F. Fraternali, C. Pedone and T. Yamada, J. Chem. Soc., Perkin Trans. 2, 1992, 971.

Paper 2/05918E
Received 5th November 1992
Accepted 1st February 1993

[^0]: \dagger See 'Instructions for Authors,' J. Chem. Soc., Perkin Trans. 2, 1993, issue 1 .

