Helical Screw Sense of Peptide Molecules. X-Ray Diffraction Structures of Two Oligopeptides with a Single Chiral Centre

Marco Crisma, Giovanni Valle, Fernando Formaggio, Alberto Bianco and Claudio Toniolo[•] Biopolymer Research Centre, C.N.R., Department of Organic Chemistry, University of Padova, 35131 Padova, Italy

A crystal-state structural analysis of Z-L-Dap(pBrBz)-(Aib)₂-NHMe and Z-L-Dab(pBrBz)-(Aib)₂-NHMe has been performed by X-ray diffraction. Both peptides are folded into incipient 3₁₀ helices stabilized by two consecutive intramolecular N-H···O=C hydrogen bonds of the C₁₀ type (β -bends). While Z-L-Dap(pBrBz)-(Aib)₂-NHMe gives rise to a left-handed helix, two independent molecules of opposite helical screw sense are observed in the crystals of Z-L-Dab(pBrBz)-(Aib)₂-NHMe. The latter compound represents the first example of screw sense indifference shown in the crystal state by a peptide containing a single chiral C^{*}-trisubstituted x-amino acid residue.

A program is currently under way in our laboratory aimed at synthesizing and examining the 3D-structure of peptides based on the highly helicogenic α -aminoisobutyric acid (Aib) residue^{1 5} as well organized molecular scaffolds and carrying side-chain functionalized α -amino acids as guest residues, as potential tools for studies of molecular recognition. We have so far investigated Aib-rich peptides containing L-Dap(*p*BrBz) or L-Dab(*p*BrBz) [L-Dap(*p*BrBz), N^β-*p*-bromobenzoyl-L- α , β diaminopropionic acid; L-Dab(*p*BrBz), N^γ-*p*-bromobenzoyl-L- α , γ -diaminobutyric acid] as the guest residues. In the present contribution the X-ray diffraction analysis of the two N^αprotected tripeptide methylamides Z-L-Dap(*p*BrBz)-(Aib)₂-NHMe (1) and Z-L-Dab(*p*BrBz)-(Aib)₂-NHMe (2) (Z, benzyloxycarbonyl; NHMe, methylamino) are reported as an interesting case of different helix screw sense preference.

Experimental

Materials.—Z-L-Dap(*p*BrBz)-(Aib)₂-NHMe (1) was synthesized in 73% yield by reacting Z-L-Dap(*p*BrBz)-OH with H-Aib)₂-NHMe [prepared, in turn, by catalytic hydrogenation of Z-(Aib)₂-NHMe] in anhydrous MeCN in the presence of *N*ethyl-*N*'-(3-dimethylaminopropyl)carbodiimide hydrochloride and *N*-methylmorpholine: m.p. 223–225 °C (from ethyl acetate); $[\alpha]_D^{20} - 14.3^\circ$ (*c* 0.5, MeOH); TLC (silica gel plates 60F–254, Merck) R_{f1} (CHCl₃-EtOH 9:1) 0.55; R_{f2} (1-BuOH–AcOH– water 60:20:20) 0.90; v_{max} (KBr disk)/cm⁻¹ 3343, 3282, 1708, 1658, 1542; δ_H (200 MHz; Me₂SO) 8.55 (1 H, m, Dap β -NH), 8.47 (1 H, s, Aib NH), 7.71 (4 H, m, *p*BrBz), 7.64 (1 H, d, Dap α -NH), 7.31 (5 H, m, Z-aromatic), 7.25 (1 H, q, NHCH₃), 7.14 (1 H, s, Aib NH), 5.01 (2 H, m, Z-CH₂), 4.17 (1 H, m, Dap α -CH), 3.55 (2 H, m, Dap β -CH₂), 2.52 (3 H, d, NHCH₃), 1.30 (3 H, s, Aib β -CH₃), 1.26 (6 H, s, Aib β -CH₃), 1.23 (3 H, s, Aib β -CH₃). Amino acid analysis (C. Erba model 3A 27): Dap 0.96, Aib 2.04.

Z-L-Dab(*p*BrBz)-(Aib)₂-NHMe (2) was obtained in 68% yield from Z-L-Dap(*p*BrBz)-OH and H-(Aib)₂-NHMe as described above for Z-L-Dab(*p*BrBz)-(Aib)₂-NHMe: m.p. 154–156 °C (from MeOH-diethyl ether); $[\alpha]_D^{20}$ -17.6° (*c* 0.5, MeOH); *R*_{f1} 0.40; *R*_{f2} 0.85; *v*_{max}(KBr disk)/cm⁻¹ 3368, 3353, 3310, 1708, 1669, 1626, 1547; δ_H (200 MHz; Me₂SO) 8.61 (1 H, s, Aib NH), 8.57 (1 H, m, Dab γ-NH), 7.74 (1 H, d, Dab α-NH), 7.73 (4 H, m, *p*BrBz), 7.32 (5 H, m, Z-aromatic), 7.25 (1 H, q, NHCH₃), 7.09 (1 H, s, Aib NH), 4.99 (2 H, m, Z-CH₂), 3.99 (1 H, m, Dab α-CH), 3.31 (2 H, m, Dab γ-CH₂), 2.52 (3 H, d, NHCH₃), 1.83 (2 H, m, Dab β-CH₂), 1.32 (3 H, s, Aib β-CH₃), 1.30 (6 H, s, Aib β-CH₃), 1.28 (3 H, s, Aib β-CH₃). Amino acid analysis: Dab 1.03, Aib 1.97.

Crystal Data for Z-L-Dap(pBrBz)-(Aib)₂-NHMe (1).— C₂₇H₃₄N₅O₆Br, M = 604.5. Orthorhombic, a = 18.155(2), b = 16.027(2), c = 10.240(2) Å, V = 2979.5(8) Å³, space group $P2_12_12_1$, Z = 4, $D_c = 1.348$ g cm³. Crystal dimensions: $0.20 \times 0.20 \times 0.25$ mm, μ (Mo-K α) = 14.09 cm⁻¹. Final *R*value 0.056, final *R*_w-value 0.057.

Crystal Data for Z-L-Dab(pBrBz)-(Aib)₂-NHMe Monohydrate (2).— $C_{28}H_{36}N_5O_6Br$ ·H₂O, M = 636.5. Triclinic, a = 14.512(2), b = 14.227(2), c = 8.202(2) Å, $\alpha = 92.7(2)^{\circ}$, $\beta = 94.3(2)^{\circ}$, $\gamma = 105.7(2)^{\circ}$, V = 1622(2) Å³, space group P1, Z = 2, $D_c = 1.304$ g cm⁻³. Crystal dimensions: $0.16 \times 0.24 \times 0.40$ mm, μ (Mo-K α) = 13.00 cm⁻¹. Final *R*-value 0.073.

X-Ray Structure Determination of Z-L-Dab(pBrBz)-(Aib)₂-NHMe (1) and Z-L-Dab(pBrBz)-(Aib)₂-NHMe Monohydrate (2).—Colourless crystals of 1 and 2 were grown from ethyl acetate-light petroleum (b.p. 60-80 °C) and methanol-diethyl ether solutions, respectively. Philips PW 1100 four-circle diffractometer; θ -2 θ scan mode up to 2θ = 56°; graphitemonochromated Mo-Kx radiation ($\lambda = 0.7107$ Å); 3879 and 7778 unique reflections for 1 and 2, respectively, were corrected for Lorentz and polarization effects but not for absorption. 1116 Reflections with $F \ge 7\sigma(F)$ for 1, and 3674 reflections with $F \ge 6\sigma(F)$ for 2, respectively, were considered observed. Both structures were solved by direct methods using SHELXS-86.6 Refinement was carried out by blocked least-squares, with weight $w = 1/[\sigma^2(F) + 0.0021 F^2]$ for 1, and unit weight for 2. The thermal parameters were anisotropic for all non-hydrogen atoms. Hydrogen atoms of both structures were in part located on a difference Fourier map and in part calculated, and they were not refined. All calculations were performed on a MicroVAX 3400 Digital Computer with SHELX-76 software.⁷

Tables of fractional atomic co-ordinates, positional parameters of hydrogen atoms, anisotropic thermal parameters, bond distances, and bond angles for 1 and 2 are available from the Cambridge Crystallographic Data Centre.[†]

Results

The molecular structures of Z-L-Dap(pBrBz)-(Aib)₂-NHMe (1) and of the two crystallographically independent molecules (indicated as A and B, respectively) of Z-L-Dab(pBrBz)-(Aib)₂-

⁺ See 'Instructions for Authors,' J. Chem. Soc., Perkin Trans. 2, 1993, issue 1.

NHMe monohydrate (2), determined by X-ray diffraction, are illustrated in Figs. 1 and 2, respectively. Relevant torsion angles⁸ are reported in Table 1. Geometrical parameters for intra- and inter-molecular hydrogen bonds⁹ ¹³ are summarized in Table 2.

Bond distances and bond angles for 1 and 2 (deposited) are in general agreement with previously reported values for the geometry of the Z-urethane moiety, ¹⁴ the secondary amide ^{15,16} and peptide¹⁷ groups, and the Aib ^{18,19} residue.

The conformation of the Z-urethane group in both 1 and 2 is the usual *trans*, *trans* (θ^1 and ω_0 torsion angles) or type-*b* conformation.¹⁴ All secondary amide and peptide groups are *trans*, but some distortion from planarity is observed.

The backbone of Z-L-Dap(pBrBz)-(Aib)₂NHMe (1) is folded

Fig. 1 X-Ray diffraction structure of Z-L-Dap(pBrBz)-(Aib)₂-NHMe (1) with atom numbering. The intramolecular hydrogen bonds are indicated as dashed lines.

into two consecutive β -bends stabilized by intramolecular hydrogen bonds between the NH group of Aib(3) and the carbonyl oxygen of the urethane moiety, and between the NH group of the C-terminal methylamido moiety and the carbonyl oxygen of L-Dap(1), respectively. Both β -bends are (left-handed helical) type-III', having the backbone torsion angles in the ranges 63–54° (φ), and 47–16° (ψ).²⁰ ²² A C₁^{β} ··· O₁ short distance (2.79 Å) is observed in the L-Dap residue. The conformation of the L-Dap side chain, defined by rotations about the C²-C^{β} and C^{β}-N^{β} bonds, is *gauche⁻*, *gauche⁻*.

Similarly to 1, both independent molecules A and B of Z-L-Dab(*p*BrBz)-(Aib)₂-NHMe monohydrate (2) are folded into two consecutive β -bends stabilized by two intramolecular hydrogen bonds, between the NH group of Aib(3) and the carbonyl oxygen of the urethane moiety, and between the NH group of the C-terminal methylamido moiety and the carbonyl oxygen of L-Dab(1), respectively. The N-terminal hydrogen bond is weaker in molecule A than in molecule B.⁹ ¹¹

In both molecules the sets of φ , ψ torsion angles are close to those of an ideal 3_{10} -helix, $2^{3,24}$ but they have negative signs, corresponding to the right-handed helical screw sense, in molecule A, while positive in molecule B, giving rise to a lefthanded 3_{10} -helix. The $C_1^{\beta} \cdots O_1$ short contact, observed in the left-handed helical L-Dap-containing peptide 1, is also found in the L-Dab residue of the left-handed molecule **B** of **2** (2.75 Å), but not in the right-handed molecule A (3.21 Å). The torsion angles about the C^x-C^{β}, C^{β}-C^{γ}, and C^{γ}-N^{γ} bonds of the L-Dab side chain are gauche⁻, trans, and skew⁻, respectively, in molecule A, but gauche⁻, gauche⁻, and trans, respectively, in molecule B. These values should be compared with the trans, trans disposition of the side chain in the crystal structure of L-Dab hydrochloride.^{25.26}. As a result, in both molecules A and B the carbonyl group of the p-bromobenzoyl moiety is oriented on the same side of the molecule as the Z-urethane N²-protecting group. Overall, a pseudo-symmetry, violated essentially by the identical L-configuration of the Dab C^{*} atom, relates molecule A to molecule B.

In the packing mode of Z-L-Dap(*p*BrBz)-(Aib)₂-NHMe (1) the N₁-H and N₂-H groups are hydrogen-bonded to the $O_2=C_2'$ and $O_3 = C_3'$, respectively, of a (-x, -1/2 + y, 1/2 - z) symmetry-related molecule. The geometry of the N₂-H···

Fig. 2 X-Ray diffraction structure of Z-L-Dab(ρ BrBz)-(Aib)₂-NHMe monohydrate (2) with atom numbering. The two crystallographically independent molecules are indicated as A and B, respectively. The intramolecular hydrogen bonds are indicated as dashed lines.

Table 1 Selected torsion angles (°) with estimated standard deviations in parentheses

			Z-L-Dab-(pBrBz)-(Aib)2-NHMe (2)		
Angle		Z-L-Dap(pBrBz)-(Aib)2-NHMe (1)	Molecule A	Molecule B	
$\begin{array}{c} C(1)-C(7)-O_u-C_o'\\ C(7)-O_u-C_o-N_1\\ O_u-C_o'-N_1-C_1^2\\ C_o'-N_1-C_1^2-C_1'\\ N_1-C_1^2-C_1'-N_2\\ C_1^2-C_1'-N_2-C_2^2\\ C_1^2-N_2-C_2^2-C_2'\\ N_2-C_2^2-C_2'-N_3\\ C_2^2-C_2'-N_3-C_3^2\\ C_2'-N_3-C_3^2-C_3'\\ N_3-C_3^2-C_3'-N_T\\ C_3^2-C_3'-N_T-C_T\\ N_1-C_1^2-C_1^{\beta}-N_1^{\beta}-C(8)\\ C_1^{\beta}-N_1^{\beta}-C(8)-C(9)\\ N_1^{\beta}-C(8)-C(9)-C(10)\\ N_1-C_1^2-C_1^{\beta}-N_1^{\gamma}-C(8)\\ C_1^2-C_1^{\beta}-C_1^{\gamma}-N_1^{\gamma}\\ C_1^3-C_1^{\beta}-C_1^{\gamma}-N_1^{\gamma}\\ C_1^3-C_1^{\beta}-C_1^{\gamma}-N_1^{\gamma}\\ C_1^{\beta}-C_1^{\beta}-C_1^{\gamma}-N_1^{\gamma}\\ C_1^{\beta}-C_1^{\gamma}-N_1^{\gamma}-C(8)-C(9)\\ N_1-C_1^{\alpha}-C_1^{\beta}-C_1^{\gamma}-N_1^{\gamma}\\ C_1^{\beta}-C_1^{\gamma}-N_1^{\gamma}-C(8)-C(9)\\ N_1^{\gamma}-C(8)-C(9)-C(14)\\ \end{array}$	$ \begin{array}{c} \theta^2 \\ \theta^1 \\ \omega_0 \\ \varphi_1 \\ \psi_1 \\ \omega_1 \\ \varphi_2 \\ \psi_2 \\ \omega_2 \\ \varphi_3 \\ \psi_T \\ \omega_T \end{array} $	$ \begin{array}{c} -90(1) \\ 180(1) \\ 174(1) \\ 54(2) \\ 47(1) \\ 174(1) \\ 63(2) \\ 16(2) \\ -176(1) \\ 54(2) \\ 38(2) \\ -177(2) \\ -49(2) \\ -80(1) \\ 172(1) \\ -165(1) \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	$\begin{array}{c} 80(2) \\ 175(1) \\ -179(1) \\ -67(2) \\ -27(2) \\ 180(2) \\ -57(2) \\ -28(2) \\ 180(1) \\ -57(2) \\ -33(2) \\ -179(2) \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	$\begin{array}{c} -82(2) \\ -177(1) \\ -177(1) \\ 53(2) \\ 42(2) \\ 175(2) \\ 57(2) \\ 25(2) \\ 180(2) \\ 58(2) \\ 34(2) \\ 174(2) \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	

Table 2 Intra- and inter-molelcular hydrogen bond parameters for Z-L-Dap(*p*BrBz)-(Aib)₂-NHMe (1) and Z-L-Dab(*p*BrBz)-(Aib)₂-NHMe monohydrate (2)

Compound	Donor D-H	Acceptor A	Symmetry equivalence of A	Distance/Å D····A	Distance/Å H • • • A	Angle/° D–H • • • A
$Z-L-Dap(pBrBz)-(Aib)_{3}-NHMe(1)$	N ₂ -H	0 ₀	X. Y. Z	3.08	2.01	156
, (····,2	N _T -H	Ō,	x, y, z	3.07	2.01	159
	N,-H	ο,	-x, $-1/2 + v$, $1/2 - z$	2.79	1.73	164
	N,-H	0,	-x, -1/2 + y, 1/2 - z	2.98	2.34	116
	N, [₿] –H	O(1)	1/2 - x, $1 - y$, $-1/2 + z$	2.96	1.90	163
Z-1-Dap(pBrBz)-(Aib)2-NHMe	•		• • •			
Monohydrate (2)	N _{3A} -H	O _{0A}	<i>x</i> , <i>y</i> , <i>z</i>	3.22	2.25	149
	N _{TA} -H	O _{1A}	x, y, z	2.94	1.93	151
	N _{3B} -H	O _{0B}	<i>x</i> , <i>y</i> , <i>z</i>	3.10	2.11	150
	N _{TB} -H	O _{1B}	<i>x</i> , <i>y</i> , <i>z</i>	3.08	2.05	153
	$N_{1A}-H$	O(1) _B	x, y, -1 + z	2.98	1.93	162
	$N_{1B}-H$	$O(1)_A$	<i>x</i> , <i>y</i> , <i>z</i>	2.83	1.80	154
	$N_{2A}-H$	O(2),	x, 1 + y, -1 + z	2.91	1.93	148
	N _{2B} -H	O(1) _w	1 + x, y, z	2.85	1.84	151
	N _{1A} ^y -H	O _{3B}	x, 1 + y, z	3.04	2.05	148
	$N_{1B}^{\gamma}-H$	0 _{3A}	1 + x, y, 1 + z	3.08	2.21	135
	$O(1)_{w} - H_{1}$	0 _{3A}	x, y, z	2.76	1.84	177
	$O(1)_{w} - H_{2}$	$O(1)_A$	-1 + x, y, z	2.79	1.84	178
	$O(2)_{w} - H_{1}$	O _{3B}	<i>x</i> , <i>y</i> , <i>z</i>	2.85	1.89	179
	$O(2)_w - H_2$	O(1) _B	x, -1 + y, z	2.79	1.88	176

O₃ interaction is rather distorted.⁹⁻¹¹ Thus, along the *b* direction rows of molecules are generated, which are also linked in the *c* direction through N₁^B-H •••O(1)=C(8) (1/2 - x, 1 - y, -1/2 + z) hydrogen bonds. Packing is then completed through van der Waals interactions.

A complex network of hydrogen bonds characterizes the packing mode of Z-L-Dab(*p*BrBz)-(Aib)₂-NHMe monohydrate (2). Molecule **B** is linked to molecule **A** of the same asymmetric unit by a hydrogen bond between the N_{1B}-H and O(1)_A=C(8)_A groups, while the N_{1A}-H group is hydrogen-bonded to the O(1)_B=C(8)_B group of a (x, y, -1 + z) symmetry-related molecule. In the same asymmetric unit the two co-crystallized water molecules act as hydrogen bond donors to the O(1)_W is hydrogen-bonded to the O(1)_A=C(8)_B groups, respectively. In addition, the O(1)_W is hydrogen-bonded to the O(1)_A=C(8)_B group of a (x, -1 + y, z) symmetry-related molecule. Both water molecules also act as hydrogen bond

acceptors: the N_{2B}-H group is linked to a $(1 + x, y, z) O(1)_W$ and the N_{2A}-H group is linked to a $(x, 1 + y, -1 + z) O(2)_W$. Finally, the N_{1A} γ -H group is hydrogen-bonded to a $(x, 1 + y, z) O_{3B}=C_{3B}'$ group and the N_{1B} γ -H group is hydrogen-bonded to a $(1 + x, y, 1 + z) O_{3A}=C_{3A}'$ group, respectively.

Interestingly, in the packing mode of Z-L-Dap(pBrBz)-(Aib)₂-NHMe (1) only backbone-to-backbone and side chain-to-side chain intermolecular hydrogen bonds are observed. Conversely, the packing of Z-L-Dab(pBrBz)-(Aib)₂-NHMe monohydrate (2) is characterized by intermolecular hydrogen bonds between the side-chain N-H groups and backbone C=O groups, while the backbone N-H groups are hydrogen-bonded either to side-chain C=O groups or to water molecules.

Discussion

It is well established that it is the right-handed α -helical screw sense that is favoured by C^{α}-trisubstituted L- α -amino acids.

This finding has been mainly ascribed to the unfavourable steric interaction occurring between the side-chain C^{β} atom and the carbonyl oxygen of the same residue in the left-handed helical conformation.^{27 30} A similar $C_i^{\beta} \cdots O_i$ short distance is experienced by either the pro-L or pro-D C^{β} atom of the Aib residue in the 310-helical conformation, depending on whether the helix is left- or right-handed, respectively. Such an interaction cannot be avoided by a C^{α}-tetrasubstituted α -amino acid, irrespective of the helix handedness,¹⁸ but its effect is not large enough to prevent the Aib residue from being the strongest known helix inducer.^{1 5} In this paper we have shown that a short $C_i^{\beta} \cdots O_i$ distance is also observed when a C^{α} trisubstituted L-a-amino acid residue is present in a lefthanded 3_{10} -helix. However, despite this unfavourable contact, the L-Dap-containing peptide 1 adopts exclusively the lefthanded helical screw sense in the crystal state, while both screw senses are seen in the X-ray structure of the L-Dab-containing peptide 2.

In this connection, it is worth pointing out that a reversal of the usual relationship between amino acid configuration and helical handedness was also shown to occur in poly- α -amino acids, such as poly(β -benzyl)-L-aspartate and some related compounds.^{31 34} Such behaviour was explained by an energetic balance of side-chain nonbonded interactions (which are less unfavourable in the right-handed helix) and backbone-side chain electrostatic interactions which, given a proper orientation of the side chain, may favour the lefthanded screw sense.^{35,36}

In peptides 1 and 2, although packing effects could not be ruled out, intermolecular interactions analogous to those operative for poly(β -benzyl)-L-aspartate may play a role in determining the observed helical screw senses. Unfortunately, experimental data on poly(N^{\$}-pBrBz)-L-Dap or poly(N⁷pBrBz)-L-Dab are not available, while a right-handed helical conformation has been determined for poly(N^{\$}-pBrBz)-L-Orn (Orn, ornithine, which differs from Dab and Dap by one and two additional methylene groups, respectively, in the side chain) on the basis of a X-ray diffraction study of oriented films.³⁷ In the light of the results reported in the present contribution poly(N^{\$}-pBrBz)-L-Dap and poly(N^{\$}-pBrBz)-L-Dab may well deserve a detailed conformational study.

The first occurrence of a chiral peptide assuming both helical screw senses in the crystal state has been documented in our laboratory for Ac-(Aib)₂-L-Iva-(Aib)₂-OMe (Ac, acetyl; Iva, isovaline; OMe, methoxy), where the only chiral centre is the quaternary Iva C^{α} atom.³⁸ Additional examples of chiral peptides showing both helical screw senses in the crystal state have been recently found by us in some Aib-rich peptides containing other chiral C^{α}-tetrasubstituted amino acid residues, namely C^{α}-methylphenylalanine and C^{α}-methylleucine.^{39–41}

On the other hand, a number of crystal structures indicate that a single chiral C^{α}-trisubstituted amino acid residue is sufficient to impart only one helical screw sense when incorporated into an Aib-rich peptide sequence.⁴²⁻⁴⁷ The only occurrence of both helical screw senses in a peptide containing Aib and C^{α}-trisubstituted protein amino acids has been recently reported for Z-D-Val-(Aib)₂-L-Phe-OMe, where the two chiral residues have opposite configuration and hence opposite screw sense preferences.⁴⁸

To the best of our knowledge, the structure of Z-L-Dab(pBrBz)-(Aib)₂-NMHe (2) described here represents the first observation of a peptide containing a single chiral C^{α}-trisubstituted amino acid residue assuming both helical screw senses in the crystal state.

In addition, the present structural investigation suggests that the incorporation of a side-chain-functionalized amino acid residue, bearing potential hydrogen-bonding donor and acceptor groups, into a short Aib sequence does not interfere with the intramolecular hydrogen-bonding scheme typical of 3_{10} -helical Aib-rich peptides.

Acknowledgements

This work was supported by the Italian National Research Council (C.N.R.) '*Progetto Finalizzato Chimica Fine II*.' The skilful technical assistance of Mr. Vittorio Moretto is gratefully acknowledged.

References

- 1 I. L. Karle and P. Balaram, Biochemistry, 1990, 29, 6747.
- 2 B. V. V. Prasad and P. Balaram, CRC Crit. Rev. Biochem., 1984, 16, 307.
- 3 C. Toniolo, G. M. Bonora, A. Bavoso, E. Benedetti, B. Di Blasio, V. Pavone and C. Pedone, *Biopolymers*, 1983, **22**, 205.
- 4 C. Toniolo and E. Benedetti, Macromolecules, 1991, 24, 4004.
- 5 K. T. O'Neil and W. F. DeGrado, Science, 1990, 250, 646.
- 6 G. M. Sheldrick, in *Crystallographic Computing 3*, eds. G. M. Sheldrick, C. Krüger and R. Goddard, Oxford University Press, Oxford, 1985, p. 175.
- 7 G. M. Sheldrick, SHELX-76, Program for Crystal Structure Determinations, University of Cambridge, 1976.
- 8 IUPC-IUB Commission on Biochemical Nomenclature, Biochemistry, 1970, 9, 3471.
- 9 C. Ramakrishnan and N. Prasad, Int. J. Protein Res., 1971, 3, 209.
- 10 R. Taylor, O. Kennard and W. Versichel, Acta Crystallogr., Sect. B, 1984, 40, 280.
- 11 C. H. Görbitz, Acta Crystallogr., Sect. B, 1989, 45, 390.
- 12 I. D. Brown, Acta Crystallogr., Sect. A, 1976, 32, 24.
- 13 J. Mitra and C. Ramakrishnan, *Int. J. Pept. Protein Res.*, 1977, 9, 27. 14 E. Benedetti, C. Pedone, C. Toniolo, M. Dudek, G. Némethy and H.
- A. Scheraga, Int. J. Pept. Protein Res., 1983, 21, 163. 15 L. Leiserowitz and M. Tuval, Acta Crystallogr., Sect. B, 1978, 34,
- 1230.
- 16 P. Chakrabarti and J. D. Dunitz, Helv. Chim. Acta, 1982, 65, 1555.
- 17 E. Benedetti, in Chemistry and Biochemistry of Amino Acids, Peptides and Proteins, ed. B. Weinstein, Dekker, New York, 1982, vol. 6, p. 105.
- 18 Y. Paterson, S. M. Rumsey, E. Benedetti, G. Némethy and H. A. Scheraga, J. Am. Chem. Soc., 1981, 103, 2947.
- 19 G. Valle, M. Crisma, F. Formaggio, C. Toniolo and G. Jung, *Liehigs Ann. Chem.*, 1987, 1055.
- 20 C. M. Venkatachalam, Biopolymers, 1968, 6, 1425.
- 21 C. Toniolo, CRC Crit. Rev. Biochem., 1980, 9, 1.
- 22 G. D. Rose, L. M. Gierasch and J. A. Smith, Adv. Protein Chem., 1985, 37, 1.
- 23 C. Toniolo and E. Benedetti, TIBS, 1991, 16, 350.
- 24 E. Benedetti, B. Di Blasio, V. Pavone, C. Pedone, A. Santini, M. Crisma and C. Toniolo, in *Molecular Conformation and Biological Interactions*, eds. P. Balaram and S. Ramaseshan, Indian Academy of Sciences, Bangalore, 1991, p. 497.
- 25 H. Hinazumi and T. Mitsui, Acta Crystallogr., Sect. B, 1971, 27, 2152.
- 26 P. S. Naganathan and K. Venkatesan, Acta Crystallogr., Sect. B, 1971, 27, 2159.
- 27 L. Pauling, R. B. Corey and H. R. Branson, Proc. Natl. Acad. Sci. USA, 1951, 37, 205.
- 28 M. L. Huggins, J. Am. Chem. Soc., 1952, 74, 3963.
- 29 J. Hermans, A. G. Anderson and R. H. Yun, *Biochemistry*, 1992, 31, 5646.
- 30 R. Fairman, S. J. Anthony-Cahill and W. F. DeGrado, J. Am. Chem. Soc., 1992, 114, 5458.
- 31 E. M. Bradbury, L. Brown, A. R. Downie, A. Elliot, R. D. B. Fraser and W. E. Hanby, J. Mol. Biol., 1962, 5, 230.
- 32 M. Goodman, F. Boardman and I. Listowsky, J. Am. Chem. Soc., 1963, 85, 2491.
- 33 E. M. Bradbury, B. G. Carpenter and H. Goldman, *Biopolymers*, 1968, 6, 837.
- 34 E. H. Erenich, R. H. Andreatta and H. A. Scheraga, J. Am. Chem. Soc., 1970, 92, 1116.
- 35 J. F. Yan, G. Vanderkooi and H. A. Scheraga, J. Chem. Phys., 1968, 49, 2713.
- 36 J. F. Yan, F. A. Momany and H. A. Scheraga, J. Am. Chem. Soc., 1970, 92, 1109.
- 37 S. Sasaki and Y. Ywanami, Macromolecules, 1988, 21, 3389.
- 38 G. Valle, M. Crisma, C. Toniolo, R. Beisswenger, A. Rieker and G. Jung, J. Am. Chem. Soc., 1989, 111, 6828.

- 39 C. Toniolo, M. Crisma, F. Formaggio, G. Valle, G. Cavicchioni, G. Précigoux, A. Aubry and J. Kamphuis, *Biopolymers*, in the press.
- 40 F. Formaggio, S. Pegoraro, M. Crisma, G. Valle, C. Toniolo, G. Précigoux, W. H. J. Boesten, H. E. Schoemaker and J. Kamphuis, J. Biomol. Struct. Dyn., in the press.
- 41 M. Pantano, F. Formaggio, M. Crisma, G. M. Bonora, C. Toniolo, A. Aubry, D. Bayeul, A. Dantant, G. Precigoux, W. H. J. Boesten, H. E. Schoemaker and J. Kamphuis, *Pept. Res.*, submitted.
- 42 A. Bavoso, E. Benedetti, B. Di Blasio, V. Pavone, C. Pedone, C. Toniolo, G. M. Bonora, F. Formaggio and M. Crisma, J. Biol. Struct. Dyn., 1988, 5, 803.
- 43 E. Benedetti, A. Bavoso, B. Di Blasio, P. Grimaldi, V. Pavone, C. Pedone, C. Toniolo and G. M. Bonora, Int. J. Biomol. Macromol., 1985, 7, 81.

- 44 C. Toniolo, G. M. Bonora, E. Benedetti, A. Bavoso, B. Di Blasio, V. Pavone and C. Pedone, *Biopolymers*, 1983, 22, 1335.
- 45 E. Benedetti, A. Bavoso, B. Di Blasio, V. Pavone, C. Pedone, C. Toniolo, G. M. Bonora and M. Crisma, *Int. J. Pept. Protein Res.*, 1983, 22, 385.
- 46 R. Bosch, G. Jung and W. Winter, *Liebigs Ann. Chem.*, 1982, 1322.
 47 B. V. V. Prasad, N. Shamala, R. Nagaraj and P. Balaram, *Acta Crystallogr.*, Sect. B, 1980, 36, 107.
- 48 V. Pavone, A. Lombardi, F. Nastri, M. Saviano, B. Di Blasio, F. Fraternali, C. Pedone and T. Yamada, J. Chem. Soc., Perkin Trans. 2, 1992, 971.

Paper 2/05918E Received 5th November 1992 Accepted 1st February 1993